A new way to wind the development clock of cardiac muscle cells

These days, scientists can collect a few skin or blood cells, wipe out their identities, and reprogram them to become virtually any other kind of cell in the human body, from neurons to heart cells.

The journey from skin cell to another type of functional cell involves converting them into induced pluripotent stem cells (iPSCs), which are similar to the developmentally immature stem cells found in embryos, and then coaxing them to mature into something different.

‘Bad guy’ fibrocytes could help rebuild damaged tissue

‘Bad guy’ fibrocytes could help rebuild damaged tissue
May 8, 2019 By Susan Lampert Smith

Could a blood cell type responsible for scarring and diseases such as pulmonary fibrosis be repurposed to help engineer healthy tissue?

A new study by a University of Wisconsin School of Medicine and Public Health researcher shows that someday, fibrocytes may be used for regenerative therapies for people who need to have their vocal folds or other tissues rebuilt after damage or loss.

UW–Madison research team finds new ways to generate stem cells more efficiently

Induced pluripotent stem (iPS) cells are among the most important tools in modern biomedical research, leading to new and promising possibilities in precision medicine. To create them requires transforming a cell of one type, such as skin, into something of a blank slate, so it has the potential to become virtually any other kind of cell in the body, useful for regenerative therapies for everything from heart disease to diabetes.

Generating Stem Cells: a Path to Greater Efficiency

SCRMC Faculty member Rupa Sridharan, assistant professor of cell and regenerative biology, studies the epigenetics of cell fate. By examining and manipulating which of a cell’s genes are expressed, she seeks to understand how the cell transitions from one type to another. “We start off with cells that are completely differentiated, meaning they can only do one thing,” explains Sridharan. “For example, a skin cell can only be a barrier, a lung cell can only help us breathe, whereas a pluripotent cell has the potential to become any of those cells.”

Faculty receive WARF, Kellett, Romnes awards

SCRMC Faculty members, Judith Kimble (/Biochemistry) is honored by receiving a WARF-named professorship, and Weibo Cai (Radiology / Medical Physics), is honored with an H.I. Romnes Faculty Fellowship. Congratulations to both of these fine researchers and teachers.