Shaoqin 'Sarah' Gong, PhD

Position title: Vilas Distinguished Professor, Advancing Vision Science Chair Professor, RRF Edwin and Dorothy Gamewell Professor

Email: shaoqingong@wisc.edu

Phone: 608-316-4311

Organ System/Disease Focus:
brain diseases, eye diseases, vascular diseases, and also cancers as well as antimicrobial applications
Aligned Research Focus:
Nanobiomaterials, nanomedicine, drug delivery, tissue engineering, biosensors
Shaoqin Gong headshot

Pubmed

More information:
Research Description:

Dr. Gong’s research group focuses on the design, synthesis/fabrication, and characterization of novel materials and devices. Many of our on-going projects are multidisciplinary, bridging engineering with materials science, chemistry, and the life sciences. Ongoing efforts and interests include:

    • Multifunctional nanocarriers (e.g., unimolecular nanoparticles, polymer micelles and vesicles, polymer nanocages, functionalized inorganic nanoparticles) for combined delivery of therapeutic and diagnostic agents which can be used to treat and diagnose various types of diseases (e.g., cancers, vascular diseases, liver diseases, eye diseases, and brain diseases).
    • CRISPR genome editing
    • Cancer immunotherapy
    • Tissue engineering scaffolds
    • Antimicrobial materials
    • Multifunctional polymer nanocomposites for various applications, including flexible electronics, supercapacitors, nanogenerators, and sensors.
Explore Dr. Gong’s Research

Shaoqin Sarah Gong – Google Scholar
Shaoqin Sarah Gong – PubMed

Selected References:
  1. Zhu J., Xie R., Gao R., Zhao Y., Yodsanit N., Zhu M., Burger, J.C., Ye M., Tong, Y., Gong, S.* Multimodal nanoimmunotherapy engages neutrophils to eliminate Staphylococcus aureus infections, Nature Nanotechnologyhttps://doi.org/10.1038/s41565-024-01648-8, 2024.
  2. Lee, I.-K., Xie, R., Luz-Madrigal, A., Min, S., Zhu, J., Jin, J., Edwards, K.L., Phillips, M.J., Ludwig, A.L., Gamm, D.M.*, Gong, S.*, Ma, Z*. Micromolded Honeycomb Scaffold Design to Support the Generation of a Bilayered RPE and Photoreceptor Cell Construct, Bioactive Materials, 30, 142-153, 2023. https://www.sciencedirect.com/science/article/pii/S2452199X23002323
  3. Shirasu, T., Yodsanit, N., Li, J., Huang, Y., Xie, X., Tang, R., Wang, Q., Zhang, M., Urabe, G., Webb, A., Wang, Y., Wang, X., Xie, R., Wang, B., Kent, K.C.*, Gong, S.*, Guo, L.-W.*, Neointima abating and endothelium preserving—An adventitia-localized nanoformulation to inhibit the epigenetic writer DOT1L, Biomaterials, 122245, 2023. https://pubmed.ncbi.nlm.nih.gov/37467597/
  4. Zhang, Y., Sriramaneni, R.N., Clark, P.A., Jagodinsky, J.C., Ye, M., Jin, W., Wang, Y., Bates, A., Kerr, C.P., Le, T., Allawi, R., Wang, X., Xie, R., Havighurst, T.C., Chakravarty, I., Rakhmilevich, A.L., O’Leary, K.A., Schuler, L.A., Sondel, P.M., Kim, K., Gong, S. *, Morris, Z.S. *, Multifunctional Nanoparticle Potentiates the In Situ Vaccination Effect of Radiation Therapy and Enhances Response to Immune Checkpoint Blockade, Nature Communications, 13 (1), 1-17, 2022. https://www.nature.com/articles/s41467-022-32645-x
  5. Ye, M., Zhao, Y., Wang, Y., Xie, R., Tong, Y., Sauer, J.D., and Gong, S.*, NAD(H)-Loaded Nanoparticles for Efficient Sepsis Therapy via Modulating Immune and Vascular Homeostasis, Nature Nanotechnology, 17, 880–890, 2022. https://www.nature.com/articles/s41565-022-01137-w
  6. Ye, M., Zhao, Y., Wang, Y., Zhao, M., Yodsanit, N., Xie, R., Andes, D., and Gong, S.*, A dual-responsive antibiotic-loaded nanoparticle specifically binds pathogens and overcomes antimicrobial-resistant infections, Advanced Materials, 2006772, 2021. https://onlinelibrary.wiley.com/doi/full/10.1002/adma.202006772
  7. Zhao, Y., Xie, R., Yodsanit, N., Ye, M., Wang, Y., and Gong, S.*, “Bioengineered fibrin-targeted and H2O2-responsive nanocarriers for thrombus therapy,” Nano Today, 35, 100986, 2020. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7561002/
  8. Chen, G., Abdeen, A., Wang, Y., Shahit, P.K., Robertson, S., Xie, R., Suzuki, M., Pattnaik R., Saha, K.*, and Gong, S.*, A Biodegradable Nanocapsule Delivers a Cas9 Ribonucleoprotein Complex for in vivo Genome Editing, Nature Nanotechnology,14, 974–980, 2019. https://www.nature.com/articles/s41565-019-0539-2
  9. Jung, Y., Chang, T., Zhang, H., Yao, C. Zheng, Q., Yang, V., Mi, H., Kim, M., Cho, S., Park, D., Jiang, H., Lee, J., Qiu, Y., Cai, Z., Gong, S.*, and Ma, Z.*, High-Perfor­mance Flexible Electronics Based on Biodegradable Cellulose Nanofibril Paper, Nature Communication, 6 (7170), 2015. DOI:10.1038/ncomms8170
  10. Liu, F., Ma, F., Wang, Y., Hao, L., Zeng, H., Jia, C., Wang, Y., Liu, P., Ong, I., Li, B., Chen, G., Jiang, J., Gong, S.*, Li, L.*, and Xu, W.*, PKM2 Methylation by CARM1 Activates Aerobic Glycolysis to Promote Tumorigenesis, Nature Cell Biology, 19 (11), 1358–1370, 2017. DOI: 10.1038/ncb3630